See all Blog Posts What Is Tempering? Category: Processes Posted: October 19, 2018 Tempering is a heat treatment process that alters the mechanical properties (typically ductility and hardness) and relieves internal stresses of a steel. Tempering allows carbon trapped in a martensitic microstructure to disperse, and enables the internal stresses to be released from the steel that may have been created from prior operations. The Tempering Process Tempering is performed by elevating the steel to a set point below its lower critical temperature, typically following a hardening operation. Once this temperature is reached, it is held there for a specified amount of time. The exact temperature and time depend on several factors such as the type of steel and desired mechanical properties. To get the steel to its critical temperature, some type of heating device must be used. Common devices include gas furnaces, electrical resistance furnaces, or induction furnaces. Often, this heating is done in a vacuum or with an inert gas to protect the steel from oxidation. Once the furnace achieves the desired temperature, a dwell time occurs. Following the dwell time, the furnace is shut off and the steel is allowed to cool at predetermined rate. Why Is Steel Tempered? Tempering steel after a hardening process allows for a middle ground of hardness and strength. This is achieved by allowing the carbon diffusion to occur within a steel microstructure. When steel is hardened, it can become excessively brittle and hard. However, when not hardened, the steel may not have the strength or abrasion resistance needed for its intended application. Tempering also improves the machinability and formability of a hardened steel, and can reduce the risk of the steel cracking or failing due to internal stresses. When Is Tempering Used? Tempering is most commonly used following a quenching operation. Heating a carbon steel and rapidly quenching it can leave it too hard and brittle. Tempering it can restore some of its ductility. Tempering can reduce the hardness and relieve the stress of a welded component. Welds can create a localised zone that has been hardened due to the heat of the welding process. This can leave undesirable mechanical properties and residual stress that can promote hydrogen cracking. Tempering helps prevent this. Work hardened materials often require tempering. Materials can become work hardened through processes such as punching, bending, forming, drilling, or rolling. Work hardened materials have a high amount of residual stresses that can be alleviated through a tempering process. Metal Supermarkets Metal Supermarkets is the world’s largest small-quantity metal supplier with 125 brick-and-mortar stores across the US, Canada, and United Kingdom. We are metal experts and have been providing quality customer service and products since 1985. At Metal Supermarkets, we supply a wide range of metals for a variety of applications. Our stock includes: mild steel, stainless steel, aluminium, tool steel, engineering steel, brass, bronze and copper. We carry a wide range of shapes including: bars, tubes, sheets and plates. We can cut metal to your exact specifications. Visit one of our 8 locations in the United Kingdom today. Share: Facebook Twitter LinkedIn E-Mail Related blog articles What is Monel? Threaded Bar vs Bolt: What’s the Difference? Metal Supermarkets, Celebrating 30 Years in the United Kingdom, Exhibits at UK Metals Expo 2024